Respuesta :

Given:

d = 25

e = 13

f = 16

Let's find the measure m∠D.

The figure below represents this triangle:

To find the measure of angle D, apply the cosine rule:

[tex]d^2=e^2+f^2-2ab\cos D[/tex]

Rewrite the equation for C:

[tex]D=\cos ^{-1}(\frac{e^2+f^2-d^2}{2ef})[/tex]

Where:

e = 13

f = 16

d = 25

Input values into the equation and solve:

[tex]\begin{gathered} D=\cos ^{-1}(\frac{13^2+16^2-25^2}{2(13)(16)}) \\ \\ D=\cos ^{-1}(\frac{169+256-625}{416}) \\ \\ D=\cos ^{-1}(\frac{-200}{416}) \\ \\ D=\cos ^{-1}(-0.4808) \\ \\ D=118.7^0 \end{gathered}[/tex]

Therefore, the measue of angle D is 118.7 degrees.

ANSWER:

d. 118.7 degrees.

Ver imagen DamariahS187608