Respuesta :

Given:

A line passes through the points A (1,3) and B (7,1).

The objective is,

a) To find gradient of AB.

b) To find gradient of a line perpendicular to AB.

c) To find the equation line passing throught (4,2) and perpendicular to AB.

Explanation:

a)

Consider the given coordinates of line AB as,

[tex]\begin{gathered} (x_1,y_1)=(1,3) \\ (x_2,y_2)=(7,1) \end{gathered}[/tex]

The general formula to find the gradient of line AB is,

[tex]m_{AB}=\frac{y_2-y_1}{x_2-x_1}[/tex]

To find gradient of AB:

Substitute the given coordinates in the above gradient formula.

[tex]\begin{gathered} m_{AB}=\frac{1-3}{7-1} \\ =\frac{-2}{6} \\ =-3 \end{gathered}[/tex]

Hence, the gradient of line AB is -3.

b)

To find gradient of perendicular line:

Consider the perpendicular line as CD.

The product of gradients of two perpendicular lines will be -1.

So, the gradient of the perpendicular line CD can be calculated as,

[tex]\begin{gathered} m_{AB}\times m_{CD}=-1 \\ m_{CD}=\frac{-1}{m_{AB}} \\ m_{CD}=-\frac{1}{-3} \\ m_{CD}=\frac{1}{3} \end{gathered}[/tex]

Hence, the gradient of a line perndicular to AB is (1/3).

c)

To find equation of line perpendicular to AB:

Since, the perpendicular line passes through the point,

[tex](x_1,y_1)=(4,2)[/tex]

From part (b) the gradient of this perpendicular line is (1/3),

Then, the equation can be calculated using point slope fomula as,

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-2=\frac{1}{3}(x-4) \\ y-2=\frac{x}{3}-\frac{4}{3} \\ y=\frac{x}{3}-\frac{4}{3}+2 \\ y=\frac{x}{3}+0.666666\ldots.. \\ y=\frac{x}{3}+0.67 \end{gathered}[/tex]

Hence, the equation of perpendicular line is y = (x/3) + 0.67.

Answers:

a) Gradient AB : (-3)

b) Gradient CD : (1/3)

c) Equation of perpendiular line is y = (x/3) + 0.67.