Respuesta :

As given by the question

There are given that the function:

[tex]f(x)=\sqrt[16]{x}[/tex]

Now,

To find the inverse, first interchange the function f(x) to y:

So,

[tex]\begin{gathered} f(x)=\sqrt[16]{x} \\ y=\sqrt[16]{x} \end{gathered}[/tex]

Then,

Interchange the variable:

So,

[tex]\begin{gathered} y=\sqrt[16]{x} \\ x=\sqrt[16]{y} \end{gathered}[/tex]

Then,

Solve the above equation for y

So,

[tex]\begin{gathered} x=\sqrt[16y]{\square} \\ x=(y)^{\frac{1}{16}} \\ (x)^{16}=(y)^{\frac{1}{16}\times16} \\ y=x^{16} \end{gathered}[/tex]

Then,

The inverse function is :

[tex]f^{-1}(x)=x^{16}[/tex]

Hence, the correct option is (A) and the value is shown below:

[tex]f^{-1}(x)=x^{16}[/tex]

(B):

For verify, put inverse function into the given function:

So,

[tex]\begin{gathered} f(x)=\sqrt[16]{x} \\ f(f^{-1}(x))=\sqrt[16]{(x^{16})} \\ f(f^{-1}(x))=(x^{16})^{\frac{1}{16}} \\ f(f^{-1}(x))=x \end{gathered}[/tex]

And,

Put the value of f(x) into the inverse function:

So,

[tex]\begin{gathered} f^{-1}(x)=x^{16} \\ f^{-1}(f(x))=(\sqrt[16]{x})^{16} \\ f^{-1}(f(x))=(x^{\frac{1}{16}})^{16} \\ f^{-1}(f(x))=x \end{gathered}[/tex]

Hence proved.