y = 7x+6
y = x + 20
Substituting the value of y of the second equation into the first equation, we get:
x + 20 = 7x + 6
20 - 6 = 7x - x
14 = 6x
14/6 = x
7/3 = x
Replacing this value into the first equation, we get:
[tex]\begin{gathered} y=7\cdot\frac{7}{3}+6 \\ y=\frac{49}{3}+6 \\ y=\frac{49+6\cdot3}{3} \\ y=\frac{67}{3} \end{gathered}[/tex]The solution as an ordered pair is (7/3, 67/3)