Respuesta :

Given:

[tex]y=x^{\frac{8}{5}}[/tex]

To find:

The first derivative of the function.

Explanation:

Differentiating with respect to x, we get

[tex]\begin{gathered} \frac{dy}{dx}=\frac{d}{dx}(x^{\frac{8}{5}}) \\ =\frac{8}{5}x^{\frac{8}{5}-1} \\ =\frac{8}{5}x^{\frac{8-5}{5}} \\ =\frac{8}{5}x^{\frac{3}{5}} \end{gathered}[/tex]

Final answer:

The first derivative of the given function is,

[tex]\frac{dy}{dx}=\frac{8}{5}x^{\frac{3}{5}}[/tex]