Enter the correct answer in the box.What are the solutions of this quadratic equation?22 - 61 = -58Substitute the values of a and b to complete the solutions.OP+TT0 0 0vo yoα β ε 9sin cos tan sin cos'tan-1A1 -Io =tanncoXV?-WEB<ρ φΣ00L002CSC seccot lag log in1Ux= a + bix=a-bi.ResetNextmentum. All rights reserved

Enter the correct answer in the boxWhat are the solutions of this quadratic equation22 61 58Substitute the values of a and b to complete the solutionsOPTT0 0 0v class=

Respuesta :

Answer:

The solution to the given equation is;

[tex]\begin{gathered} x=3+7i \\ x=3-7i \end{gathered}[/tex]

Explanation:

Given the quadratic equation;

[tex]x^2-6x=-58[/tex]

Solving the quadratic equation by applying the quadratic formula;

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

Given the quadratic equation as;

[tex]\begin{gathered} x^2-6x=-58 \\ x^2-6x+58=0 \\ a=1 \\ b=-6 \\ c=58 \end{gathered}[/tex]

substituting;

[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{6\pm\sqrt[]{(-6)^2-4(1)(58)}}{2(1)} \\ x=\frac{6\pm\sqrt[]{36^{}-4(1)(58)}}{2(1)} \end{gathered}[/tex][tex]\begin{gathered} x=\frac{6\pm\sqrt[]{36^{}-232}}{2} \\ x=\frac{6\pm\sqrt[]{-196}}{2} \\ x=\frac{6\pm14i}{2} \\ x=3\pm7i \end{gathered}[/tex]

Therefore, the solution to the given equation is;

[tex]\begin{gathered} x=3+7i \\ x=3-7i \end{gathered}[/tex]