Respuesta :

EXPLANATION

Given the equation

(b)

[tex]9x^2-y^2=9[/tex]

First, we need to find the vertex applying the following formula:

The vertices (h+a, k), (h-a,k) are the two bending points of the hyperbola with center (h,k) and semi-axis (a,b)

Calculate hyperbola properties:

Hyperbola standard equation:

[tex]\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1[/tex]

Rewrite 9x^2 -y^2 = 9 in the form of a standard hyperbola equation:

Divide by coefficient of square terms: 9

[tex]x^2-\frac{16}{9}y^2=16[/tex]

Divide by coefficient of square terms: 16

[tex]\frac{1}{16}x^2-\frac{1}{9}y^2=1[/tex]

Refine:

[tex]\frac{x^2}{16}-\frac{y^2}{9}=1[/tex]

Rewrite in standard form:

[tex]\frac{(x-0)^2}{4^2}-\frac{(y-0)^2}{3^2}=1[/tex]

Therefore, hyperbola properties are:

(h,k) = (0,0) , a=4, b=3

Refine:

(4,0), (-4,0)

Now we need to compute the foci:

For a right-left faccing hyperbola, the foci are defined as (h+c,k), (h-c,k), where c= sqrt(a^2+b^2) is the distance from the center (h,k) to a focus.

Computing c (we have previously calculated a=4 and b=3):

[tex]c=\sqrt[]{4^2+3^2}=\sqrt[]{16+9}=\sqrt[]{25}=5[/tex]

Refine:

Foci: (5,0), (-5,0)

Next, we need to find the asymptotes:

The asymptotes are the lines the hyperbola tends to at +- infinite

For right-left hyperbolas the asymptotes are:

[tex]y=\pm\frac{b}{a}(x-h)[/tex]

Substituting terms:

[tex]y=\pm\frac{3}{4}(x-0)+0[/tex]

Refine:

[tex]y=\frac{3x}{4},\text{ y=-}\frac{3x}{4}[/tex]

Now, we need to find the vertices:

The endpoints are:

(4,0) , (-4,0)

Now, we need to find the center:

[tex]\text{center}=\text{ }\frac{x^2}{a^2}+\frac{y^2}{b^2}[/tex]