Let's solve each equation to find the right match.
[tex]2(e^{3t})=12[/tex]First, we divide the equation by 2.
[tex]\begin{gathered} \frac{2(e^{3t})}{2}=\frac{12}{2} \\ e^{3t}=6 \end{gathered}[/tex]Then, we apply logarithms on each side.
[tex]\begin{gathered} \log _e(e^{3t})=\log _e(6) \\ 3t=\log _e(6) \end{gathered}[/tex]So the first expression matches the first answer choice.
The second equation is
[tex]12(e^{3t})=2[/tex]First, we divide the equation by 12.
[tex]\begin{gathered} \frac{12(e^{3t})}{12}=\frac{2}{12} \\ e^{3t}=\frac{1}{6} \end{gathered}[/tex]Then, we apply logarithms on each side.
[tex]undefined[/tex]