Respuesta :

To answer this question, we need to remember the following key concept:

• A function is even if we check that,:

[tex]f(-x)=f(x)[/tex]

In this case, we can say that the function has been reflected in the y-axis.

• Likewise, we can say that a function is odd if we check that:

[tex]f(-x)=-f(x)[/tex]

Then, we need to check these two situations with the three given functions as follows:

First case

[tex]f(x)=\frac{2}{3}x+1[/tex]

1. We need to check if the function is even:

[tex]f(-x)=\frac{2}{3}(-x)+1=-\frac{2}{3}x+1\Rightarrow f(-x)=-\frac{2}{3}x+1[/tex]

We can check that:

[tex]f(-x)\ne f(x)[/tex][tex]f(x)=\frac{2}{3}x+1\ne f(-x)=-\frac{2}{3}x+1[/tex]

Therefore, the function is not even.

2. We need to verify if the function is odd:

[tex]f(-x)=-f(x)[/tex][tex]-f(x)=-(\frac{2}{3}x+1)=-\frac{2}{3}x-1[/tex]

Then, we have:

[tex]f(-x)=-\frac{2}{3}x+1\ne-f(x)=-\frac{2}{3}x-1[/tex]

Then, the function is not odd.

Therefore, the function is neither even nor odd.

Second case

We can proceed in a similar way as before:

1. We need to verify if the function is even:

[tex]f(x)=f(-x)[/tex][tex]f(x)=(x+2)^2=x^2+4x+4[/tex][tex]f(-x)=(-x)^2+4(-x)+4=x^2-4x+4[/tex]

Then

[tex]f(x)\ne f(-x)[/tex]

Since

[tex]f(x)=x^2+4x+4\ne f(-x)=x^2-4x+4[/tex]

Thus, the function is not even.

2. Verify if the function is odd

[tex]f(-x)=-f(x)[/tex][tex]-f(x)=-(x^2+4x+4)=-x^2-4x-4[/tex]

Then, we have that:

[tex]f(-x)\ne-f(x)\Rightarrow f(-x)=x^2-4x+4\ne-x^2-4x-4[/tex]

Hence, the function is not odd.

Therefore, the function is neither even nor odd.

Third Case

We have the function:

[tex]f(x)=|x|-x^2[/tex]

We need to remember that |x| is the function absolute value.

1. Is the function even?

Then, we have:

[tex]f(-x)=|-x|-(-x)^2=|-(-x)|-x^2=|x|-x^2[/tex]

Then, we can see that the function is even, since:

[tex]f(x)=f(-x)\Rightarrow f(x)=|x|-x^2=f(-x)=|x|-x^2[/tex]

Then, the function is even.

2. Is the function odd?

[tex]-f(x)=-(|x|-x^2)=-|x|+x^2[/tex]

Then, we have:

[tex]f(-x)\ne-f(x)\Rightarrow f(-x)=|x|-x^2\ne-|x|+x^2[/tex]

Thus, the function is not odd.

Therefore, this function is even. However, it is not odd.

In summary, we have:

a. The function:

[tex]f(x)=\frac{2}{3}x+1[/tex]

Neither even nor odd.

b. The function:

[tex]f(x)=(x+2)^2[/tex]

Neither even nor odd.

c. The function:

[tex]f(x)=|x|-x^2[/tex]

The function is even. However, it is not odd.

Ver imagen AmarachiF50523