Respuesta :

[tex]x=\dfrac{y^3}3+\dfrac1{4y}[/tex]
[tex]\dfrac{\mathrm dx}{\mathrm dy}=y^2-\dfrac1{4y^2}[/tex]

The curve's length along the interval [1,3] is

[tex]\displaystyle\int_1^3\sqrt{1+\left(\dfrac{\mathrm dx}{\mathrm dy}\right)^2}\,\mathrm dy=\int_1^3\sqrt{1+\left(y^2-\dfrac1{4y^2}\right)^2}\,\mathrm dy=\int_1^3\sqrt{y^4+\dfrac12+\dfrac1{16y^4}}\,\mathrm dy[/tex]

Since

[tex]y^4+\dfrac12+\dfrac1{16y^4}=\left(y^2+\dfrac1{4y^2}\right)^2[/tex]

you have

[tex]\displaystyle\int_1^3\left(y^2+\dfrac1{4y^2}\right)\,\mathrm dy=\dfrac{y^3}3-\dfrac1{4y}\bigg|_{y=1}^{y=3}=\dfrac{107}{12}-\dfrac1{12}=\dfrac{53}6[/tex]