Answer: 10 units²
Step-by-step explanation:
To find the area of a triangle when given its vertices, we can use this formula:
[tex]\displaystyle \frac{Jx(Ky - Ly) + Kx(Ly - Jy) + Lx(Jy - Ky) }{2}[/tex]
We will plug in our coordinate points and solve. The area will be the absolute value simplification of this expression.
J(-2, 1) is (Jx, Jy), K(0, 3) is (Kx, Ky), and L(3,-4) is (Lx, Ly).
[tex]\displaystyle \frac{Jx(Ky - Ly) + Kx(Ly - Jy) + Lx(Jy - Ky) }{2}[/tex]
[tex]\displaystyle \frac{-2(3 - -4) + 0(-4 - 1) + 3(1 - 3) }{2}[/tex]
[tex]\displaystyle \frac{-14+ 0-6}{2}[/tex]
[tex]\displaystyle \frac{-20}{2}[/tex]
[tex]\displaystyle -10,\;\;|-10|=10[/tex]