What is the area of a triangle whose vertices are J(-2, 1), K(0, 3), and L(3,-4)?
Enter your answer in the box.
units²

Respuesta :

Answer: 10 units²

Step-by-step explanation:

      To find the area of a triangle when given its vertices, we can use this formula:

[tex]\displaystyle \frac{Jx(Ky - Ly) + Kx(Ly - Jy) + Lx(Jy - Ky) }{2}[/tex]

      We will plug in our coordinate points and solve. The area will be the absolute value simplification of this expression.

J(-2, 1) is (Jx, Jy), K(0, 3) is (Kx, Ky), and L(3,-4) is (Lx, Ly).

[tex]\displaystyle \frac{Jx(Ky - Ly) + Kx(Ly - Jy) + Lx(Jy - Ky) }{2}[/tex]

[tex]\displaystyle \frac{-2(3 - -4) + 0(-4 - 1) + 3(1 - 3) }{2}[/tex]

[tex]\displaystyle \frac{-14+ 0-6}{2}[/tex]

[tex]\displaystyle \frac{-20}{2}[/tex]

[tex]\displaystyle -10,\;\;|-10|=10[/tex]