contestada

The shape below is made of two rectangles joined together.
8 cm
4 cm
5 cm
12 cm
T
Find the total area of the shape.
Optional working
Answer:
cm²

The shape below is made of two rectangles joined together 8 cm 4 cm 5 cm 12 cm T Find the total area of the shape Optional working Answer cm class=

Respuesta :

Answer:

56 cm²

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{3.5 cm}\underline{Area of a rectangle}\\\\$A=w\;l$\\\\where:\\ \phantom{ww}$\bullet$ $w$ is the width. \\ \phantom{ww}$\bullet$ $l$ is the length.\\\end{minipage}}[/tex]

The given composite figure is made of two rectangles joined together.

Area of rectangle 1

[tex]\begin{aligned}\implies A&=4 \cdot 8\\&=32\; \sf cm^2\end{aligned}[/tex]

Area of rectangle 2

[tex]\begin{aligned}\implies A&=(8-5)(12-4)\\&=3 \cdot 8\\&=24\; \sf cm^2\end{aligned}[/tex]

Therefore:

[tex]\implies \textsf{Total area}=32+24=56\; \sf cm^2[/tex]

Ver imagen semsee45

Answer:

56 cm²

Step-by-step explanation:

We are interested in finding the area of the given shape which is made up of two rectangles .

(for figure refer to the attachment)

Step 1 : Find the area of two rectangles

[tex]\longrightarrow Area_{AGHE}= length \times breadth \\[/tex]

[tex]\longrightarrow Area_{AGHE}= 5cm (4cm)\\[/tex]

[tex]\longrightarrow Area_{AGHE}= 20cm^2 [/tex]

Again ,

[tex]\longrightarrow Area_{GBCD}= 3cm(12cm)\\[/tex]

[tex]\longrightarrow Area_{GBCD}=36cm^2[/tex]

Step 2: Add up the areas

[tex]\longrightarrow Area = 20cm^2+36cm^2\\[/tex]

[tex]\longrightarrow \underline{\underline{Area = 56cm^2}}[/tex]

Ver imagen VirαtKσhli