In a study of 205 adults, the mean heart rate was 75 beats per minute. Assume the population of heart rates is known to be approximately normal with a standard deviation of 8 beats per minute. What is the 95% confidence interval for the mean beats per minute?

A. 73.9 − 76.1
B. 73.7 − 76.1
C. 73.9 − 76.3
D. 70.9 − 73.3

Respuesta :

I believe that the answer is A. :) Hope this helps!

Answer:

73.9-76.1

Step-by-step explanation:

Given : [tex]\bar{x} = 75[/tex]

            [tex]\sigma = 8[/tex]

            [tex]n = 205[/tex]

To Find: What is the 95% confidence interval for the mean beats per minute?

Solution:

Formula : [tex]\bar{x}\pm z\frac{\sigma}{\sqrt{n}}[/tex]

z = 1.96 at  95% confidence interval

Substitute the values in the formula:

[tex]75 \pm 1.96\frac{8}{\sqrt{205}}[/tex]

[tex]75 -1.96\frac{8}{\sqrt{205}},75 0+1.96\frac{8}{\sqrt{205}}[/tex]

[tex]73.9,76.1[/tex]

Hence the 95% confidence interval for the mean beats per minute is 73.9-76.1

Thus Option A is true.