Respuesta :
Answer:
73.9-76.1
Step-by-step explanation:
Given : [tex]\bar{x} = 75[/tex]
[tex]\sigma = 8[/tex]
[tex]n = 205[/tex]
To Find: What is the 95% confidence interval for the mean beats per minute?
Solution:
Formula : [tex]\bar{x}\pm z\frac{\sigma}{\sqrt{n}}[/tex]
z = 1.96 at 95% confidence interval
Substitute the values in the formula:
[tex]75 \pm 1.96\frac{8}{\sqrt{205}}[/tex]
[tex]75 -1.96\frac{8}{\sqrt{205}},75 0+1.96\frac{8}{\sqrt{205}}[/tex]
[tex]73.9,76.1[/tex]
Hence the 95% confidence interval for the mean beats per minute is 73.9-76.1
Thus Option A is true.