Respuesta :

for 9)
[tex]\bf \textit{volume of a cylinder}=V=\pi r^2 h\qquad \begin{cases} h=height\\ r=radius=\frac{diameter}{2}\\ --------------\\ diameter=12\\ r=\frac{12}{2}=6\\ volume=1018 \end{cases} \\\\ \\ 1018=\pi \cdot 6^2\cdot h\impliedby \textit{solve for "h"}[/tex]

for 10)

[tex]\bf \textit{volume of a cone}=V=\cfrac{\pi r^2 h}{3}\qquad \begin{cases} h=height\\ r=radius\\ --------------\\ h=20\\ volume=2094 \end{cases} \\\\ \\ 2094=\cfrac{\pi \cdot r^2\cdot 20}{3}\impliedby \textit{solve for "r"}[/tex]

now for 11)

[tex]\bf \textit{volume of a sphere}=V=\cfrac{4}{3}\pi r^3\qquad \begin{cases} r=radius\\ ---------\\ volume=4189 \end{cases} \\\\ \\ 4189=\pi \cdot r^3\impliedby \begin{array}{llll} \textit{solve for "r"}\\ \textit{now, the diameter is twice the radius}\\ \textit{so, the diameter will be }2r \end{array}[/tex]