Respuesta :

A power function with two points can be written by substituting the values of the two points in the given function.

To given an example, let f(x) = aˣ b;

Taking natural logs on both sides:

ln f(x) = ln (aˣb);

ln f(x) = ln (aˣ) + ln (b);

ln f(x) = xln (a) + ln (b);

Taking Exponential both sides

then,  

Let the two points be P (x₁, y₁) and Q (x₂, y₂)

The we get two equations:

(i) ln f(y₁) = x₁ ln (a) + ln (b);

(ii) ln f(y₂) = x₂ ln (a) + ln (b);

Subtracting (ii) from (i)

ln f(y₁) - ln f(y₂) = x₁ ln (a)  - x₂ ln (a) + ln (b) - ln (b);

ln f(y₁)/f(y₂) = ln a( x₁ - x₂)

[ln f(y₁)/f(y₂)]/ [( x₁ - x₂)] = ln a

Taking exponential both side

let f(y₁)/f(y₂) = s

let ( x₁ - x₂)= r

[tex]e^{ \frac{ln s}{r} } = e^{ ln a}[/tex]

[tex]e^{ \frac{ln s}{r}[/tex] = a

On solving both the equations we get two values of b

f(y₁) = aˣ₁ . b

f(y₂) = aˣ₂ . b

ln f(y₁) = ln (aˣ₁) + ln (b); --(1)

ln f(y₂) = ln (aˣ₂) + ln (b); --(2)

subtracting (2) from (1)

ln f(y₁) - ln(y₂) = ln([tex]e^{\frac{ln s}{r}^x1}[/tex]) - ln([tex]e^{\frac{ln s}{r}^x2}[/tex]) + ln(b) - ln(b)

ln f(y₁)/f(y₂) = (ln s/r)ˣ₁ - (ln s/r)ˣ₂

ln f(y₁)/f(y₂) = x₁ ln s/rˣ₁ - x₂ ln s/rˣ₂

rˣ₁rˣ₂ ln f(y₁)/f(y₂) = x₁ rˣ₂ ln s - x₂ rˣ₁  ln s

ln [tex]f(y1)/f(y2)^{r^{x1} r^{x2}}[/tex] = ln [tex]s^{x1 r^{x2}}[/tex] - ln [tex]s^{x2 r^{x1}}[/tex]

ln [tex]f(y1)/f(y2)^{r^{x1} r^{x2}}[/tex] = ln [tex]\frac {s^{x1 r^{x2}}}{s^{x2 r^{x1}}}[/tex]

Taking exponential both sides.

let [tex]f(y1)/f(y2)^{r^{x1} r^{x2}}[/tex] = w

let [tex]\frac {s^{x1 r^{x2}}}{s^{x2 r^{x1}}}[/tex] t

then,

[tex]e^{ln w} } = e^{ ln t}[/tex]

w = t

[tex]f(y1)/f(y2)^{r^{x1} r^{x2}}[/tex] = [tex]\frac {s^{x1 r^{x2}}}{s^{x2 r^{x1}}}[/tex]

Solving this equation we get the value of x by putting the values given

Learn more about Power Functions at:

brainly.com/question/29546964

#SPJ4