What is the slope of BE/slope of AE in simplest form

Answer:
Step-by-step explanation:
The coordinates of A is (0,0), E is (4,5) and B is (3,0). Thus, the slope of BE is given as:
BE=[tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
=[tex]\frac{5-0}{4-3}[/tex]
=[tex]\frac{5}{1}[/tex]
Thus, slope of BE=5.
Slope of AE =[tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
=[tex]\frac{5-0}{4-0}[/tex]
=[tex]\frac{5}{4}[/tex]
Thus, slope of AE=[tex]\frac{5}{4}[/tex]
Now, [tex]\frac{slope of BE}{slope of AE}=\frac{5}{\frac{5}{4}}=4[/tex].
which is the required simplest form.