Respuesta :

The slope is calculated using:
m = (y₂ - y₁) / (x₂ - x₁)

For BE:
m = (5 - 0) / (4 - 3)
m = 5

For AE:
m = (5 - 0) / (4 - 0)
m = 5/4 = 1.25

Answer:

 

Step-by-step explanation:

The coordinates of A is (0,0), E is (4,5) and B is (3,0). Thus, the slope of BE is given as:

BE=[tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

=[tex]\frac{5-0}{4-3}[/tex]

=[tex]\frac{5}{1}[/tex]

Thus, slope of BE=5.

Slope of AE =[tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

=[tex]\frac{5-0}{4-0}[/tex]

=[tex]\frac{5}{4}[/tex]

Thus, slope of AE=[tex]\frac{5}{4}[/tex]

Now, [tex]\frac{slope of BE}{slope of AE}=\frac{5}{\frac{5}{4}}=4[/tex].

which is the required simplest form.