2. Find the value of x in the triangle. Round your answer to the nearest tenth of a degree. Show your work.

Answer:
[tex]\displaystyle 61,9° ≈ x[/tex]
Step-by-step explanation:
We have to determine which trigonometric ratio to use, depending on what is displayed for us, and we will be using the cotangent [or tangent] ratio, however, aside we are solving for an angle measure, we must use the inverse:
[tex]\displaystyle cot^{-1}\: \frac{8}{15} ≈ 61,92751306° ≈ 61,9° \\ \\ OR \\ \\ tan^{-1}\: 1\frac{7}{8} ≈ 61,92751306° ≈ 61,9°[/tex]
Extended Information on Trigonometric Ratios
[tex]\displaystyle \frac{OPPOSITE}{HYPOTENUSE} = sin\:θ \\ \frac{ADJACENT}{HYPOTENUSE} = cos\:θ \\ \frac{OPPOSITE}{ADJACENT} = tan\:θ \\ \frac{HYPOTENUSE}{ADJACENT} = sec\:θ \\ \frac{HYPOTENUSE}{OPPOSITE} = csc\:θ \\ \frac{ADJACENT}{OPPOSITE} = cot\:θ[/tex]
I am joyous to assist you anytime.