Respuesta :

Answer:

D) (8, 6)

Step-by-step explanation:

Given: M(9, 8) is the midpoint of RS . The coordinates of S are (10, 10).

Here we have to use the mid-point formula:

[tex]x = \frac{x_1 + x_2}{2}  ; y = \frac{y_1 + y_2}{2}[/tex]

Here (x, y) is the midpoint.

(x, y) = M(9, 8)

(x2, y2) = (10, 10)

Here x = 9, y = 8 and x2 = 10 and y2 = 10

Now let's plug in these values in the mid-point formula and find (x1, y1)

[tex]9 = \frac{x_1 + 10}{2} ; 8 = \frac{y_1 + 10}{2}[/tex]

Let's simplify and find the value of x1 and y1

[tex]18 = x_1 + 10 ; 16 = y_1 + 10\\[/tex]

[tex]x_1 = 18 -10 ; y_1 = 16 -10[/tex]

[tex]x_1 = 8 ; y_1 = 6[/tex]

So the coordinates of R(8, 6)

Answer: D) (8, 6)

Step-by-step explanation:

If (x,y) is a midpoint of a line segment joining [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] such that

[tex]x=\dfrac{x_1+x_2}{2}[/tex] and [tex]y=\dfrac{y_1+y_2}{2}[/tex]  (1)

Given : M(9, 8) is the midpoint of RS . The coordinates of S are (10, 10).

Let The coordinate of point R be (a,b).

Using (1) , we have

[tex]9=\dfrac{a+10}{2}[/tex] and [tex]8=\dfrac{b+10}{2}[/tex]  

[tex]\Rightarrow\ 2(9)=a+10[/tex]and [tex]2(8)=b+10[/tex]  

[tex]\Rightarrow\ 18=a+10[/tex]and [tex]16=b+10[/tex]  

[tex]\Rightarrow\ a=18-10=8[/tex]and [tex]b=16-10=6[/tex]  

i.e. (a,b) = (8, 6)

Hence, the coordinates of R = (8, 6)

Thus , the correct answer is D) (8, 6)