[tex]\mathbb P(X=2|X\ge1)=\dfrac{\mathbb P(X=2\,\land\,X\ge1)}{\mathbb P(X\ge1)}[/tex]
Since [tex]X=2[/tex] guarantees that [tex]X\ge1[/tex], the numerator probability reduces to [tex]\mathbb P(X=2)[/tex].
Now, [tex]X[/tex] follows a binomial distribution. 2% of children have the allergy, so out 3 children randomly selected from the population, the probability that [tex]x[/tex] of them (where [tex]x\in\{0,1,2,3\}[/tex]) have the allergy is given by
[tex]\mathbb P(X=x)=\dbinom3x0.02^x(1-0.02)^{3-x}[/tex]
So you have
[tex]\mathbb P(X=2)=\dbinom320.02^20.98^1\approx0.0012[/tex]
and
[tex]\mathbb P(X\ge1)=1-\mathbb P(X<1)=\mathbb P(X=0)[/tex]
[tex]\mathbb P(X\ge1)=\dbinom300.02^00.98^3\approx0.9412[/tex]
Therefore
[tex]\mathbb P(X=2|X\ge1)=\dfrac{\mathbb P(X=2\,\land\,X\ge1)}{\mathbb P(X\ge1)}=\dfrac{\mathbb P(X=2)}{\mathbb P(X\ge1)}\approx0.0012[/tex]