Respuesta :
[tex]x^2+xy=8[/tex]
Differentiating both sides with respect to [tex]x[/tex] yields
[tex]2x+x\dfrac{\mathrm dy}{\mathrm dx}+y=0\implies\dfrac{\mathrm dy}{\mathrm dx}=-\dfrac{2x+y}x[/tex]
Now,
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\frac{\mathrm dy}{\mathrm dt}}{\frac{\mathrm dx}{\mathrm dt}}[/tex]
So you have
[tex]-\dfrac{2x+y}x=\dfrac{\frac{\mathrm dy}{\mathrm dt}}{\frac{\mathrm dx}{\mathrm dt}}[/tex]
When [tex]x=2[/tex] and [tex]y=2[/tex], you have [tex]\dfrac{\mathrm dx}{\mathrm dt}=-5[/tex], which means
[tex]-\dfrac{2(2)+2}2=-\dfrac{\frac{\mathrm dy}{\mathrm dt}}5[/tex]
[tex]\dfrac{\mathrm dy}{\mathrm dt}=15[/tex]
Differentiating both sides with respect to [tex]x[/tex] yields
[tex]2x+x\dfrac{\mathrm dy}{\mathrm dx}+y=0\implies\dfrac{\mathrm dy}{\mathrm dx}=-\dfrac{2x+y}x[/tex]
Now,
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\frac{\mathrm dy}{\mathrm dt}}{\frac{\mathrm dx}{\mathrm dt}}[/tex]
So you have
[tex]-\dfrac{2x+y}x=\dfrac{\frac{\mathrm dy}{\mathrm dt}}{\frac{\mathrm dx}{\mathrm dt}}[/tex]
When [tex]x=2[/tex] and [tex]y=2[/tex], you have [tex]\dfrac{\mathrm dx}{\mathrm dt}=-5[/tex], which means
[tex]-\dfrac{2(2)+2}2=-\dfrac{\frac{\mathrm dy}{\mathrm dt}}5[/tex]
[tex]\dfrac{\mathrm dy}{\mathrm dt}=15[/tex]
The differentiation(dy/dt) of y with respect to t of the given function with all the given parameters gives us;
dy/dt = 15
We are given the function;
x² + xy = 8
Differentiating with respect to x gives;
2x + x(dy/dx) + y = 0
Making dy/dx the subject gives;
dy/dx = -(y + 2x)/x
Now, we are told that x = x(t) and y = y(t) are both functions of t. This means that;
dy/dx = (dy/dt)/(dx/dt)
- We are given dx/dt = -5, thus plugging in relevant values, we have;
-(y + 2x)/x = (dy/dt)/-5
At x = 2 and y = 2, we have;
-(2 + 2(2))/2 = (dy/dt)/-5
-3 = (dy/dt)/-5
dy/dt = -3 * -5
dy/dt = 15
Read more at; https://brainly.com/question/13707951