(80 brainly points) and brainliest

Write the expression in simplest form.

the quantity negative two thirds x minus 7 end quantity minus the quantity negative 12 plus one sixth x end quantity

(A) three sixths x plus 5
(B) negative three sixths x minus 5
(C) five sixths x minus 5
(D) negative five sixths x plus 5

Respuesta :

Answer:

[tex]\textsf{D)} \quad -\dfrac{5}{6} x+5[/tex]

Step-by-step explanation:

Given expression:

[tex]\left(- \dfrac{2}{3} x - 7\right) - \left(- 12 +\dfrac{1}{6}x \right)[/tex]

Remove the parentheses applying the rules  -(-a) = a  and -(a) = -a

[tex]- \dfrac{2}{3} x - 7+12-\dfrac{1}{6}x[/tex]

Collect like terms:

[tex]- \dfrac{2}{3} x-\dfrac{1}{6}x - 7+12[/tex]

Add the numbers -7 and 12:

[tex]- \dfrac{2}{3} x-\dfrac{1}{6}x+5[/tex]

Rewrite the first fraction so that its denominator is 6:

[tex]- \dfrac{2 \cdot 2}{3\cdot 2} x-\dfrac{1}{6}x+5[/tex]

[tex]- \dfrac{4}{6} x-\dfrac{1}{6}x+5[/tex]

[tex]\textsf{Apply the fraction rule} \quad \dfrac{a}{c}-\dfrac{b}{c}=\dfrac{a-b}{c}:[/tex]

[tex]\dfrac{-4-1}{6} x+5[/tex]

Simplify:

[tex]-\dfrac{5}{6} x+5[/tex]