Answer:
1035.3 ft (nearest tenth)
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{9.4 cm}\underline{Trigonometric ratios} \\\\$\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}$\\\\where:\\ \phantom{ww}$\bullet$ $\theta$ is the angle. \\ \phantom{ww}$\bullet$ $\sf O$ is the side opposite the angle. \\\phantom{ww}$\bullet$ $\sf A$ is the side adjacent the angle. \\\phantom{ww}$\bullet$ $\sf H$ is the hypotenuse (the side opposite the right angle). \\\end{minipage}}[/tex]
From inspection of the given diagram, the triangle is a right triangle. Therefore, we can use the trigonometric ratios to find the height of the helicopter.
Given:
- Angle = 49°
- Side opposite the angle = h
- Side adjacent the angle = 900 ft
Substitute the given values into the tan ratio and solve for h:
[tex]\implies \tan 49^{\circ}=\dfrac{h}{900}[/tex]
[tex]\implies h=900\tan 49^{\circ}[/tex]
[tex]\implies h=1035.33156...[/tex]
Therefore, the height of the helicopter is 1035.3 ft (nearest tenth).