Respuesta :
ANSWER
[tex]T_2 = 5s^{4}v[/tex]
EXPLANATION
We can use the binomial theorem for a specified term to find the second term.
This is given by,
[tex]T_{r+1}=^nC_ra^{n-r}b^r[/tex]
For the second term,
[tex]r + 1 = 2[/tex]
This implies that,
[tex]r = 1[/tex]
By comparing
[tex](s+v)^5[/tex]
to
[tex](a+b)^n[/tex]
[tex]a = s[/tex]
[tex]b = v[/tex]
and
[tex]n = 5[/tex]
We substitute all these into the formula to get,
[tex]T_2=^5C_1s^{5-1}v^1[/tex]
[tex]T_2=^5C_1s^{4}v[/tex]
[tex]T_2 = 5s^{4}v[/tex]
The correct answer is C
[tex]T_2 = 5s^{4}v[/tex]
EXPLANATION
We can use the binomial theorem for a specified term to find the second term.
This is given by,
[tex]T_{r+1}=^nC_ra^{n-r}b^r[/tex]
For the second term,
[tex]r + 1 = 2[/tex]
This implies that,
[tex]r = 1[/tex]
By comparing
[tex](s+v)^5[/tex]
to
[tex](a+b)^n[/tex]
[tex]a = s[/tex]
[tex]b = v[/tex]
and
[tex]n = 5[/tex]
We substitute all these into the formula to get,
[tex]T_2=^5C_1s^{5-1}v^1[/tex]
[tex]T_2=^5C_1s^{4}v[/tex]
[tex]T_2 = 5s^{4}v[/tex]
The correct answer is C