Answer:
[tex]25x^2-30xy^5+9y^{10}[/tex]
Step-by-step explanation:
Using square binomial formula:
[tex](a-b)^2 = a^2-2ab+b^2[/tex]
To find the simpler form of the product:
[tex](5x-3y^5)^2[/tex]
Apply the square binomial formula:
[tex](5x)^2-2(5x)(3y^5)+(3y^5)^2[/tex]
Using exponent rules:
[tex](a^n)^m =a^{nm}[/tex]
⇒[tex]25x^2-30xy^5+9y^{10}[/tex]
therefore, the simpler form of the product is, [tex]25x^2-30xy^5+9y^{10}[/tex]