Respuesta :

Answer:  

[tex]x=\frac{-3}{2}[/tex]

Explanation:

We have been given with the expression [tex](1/3)^x=(27)^x+2[/tex]

Now, to solve the equation firstly we have to make the base same on both sides

[tex](1/3)^x=3^{-x}[/tex]

27 can be written as [tex]3^3[/tex]

[tex]27^x=(3^3)^x=3^{3x}[/tex]

Hence, given expression can be rewritten as

[tex]3^{-x}=3^{3(x+2)}[/tex]

Now since, base is same we can equate the powers on both sides

[tex]-x=3(x+2)\\ \Rightarrow-x= 3x+6\\ \Rightarrow -x-3x=6\\-4x=6[/tex][tex]\Rightarrow x=\frac{-3}{2}[/tex]

Therefore given expression [tex](1/3)^x=(27)^x+2[/tex] is equivalent to [tex]x=\frac{-3}{2}[/tex]

Equivalent means the simplified form of any given expression

To find the equivalent expression, we need to expand the given expression by using  law of indices.

The equation [tex]3^{-x} = 3^{3x} + 2[/tex] is equivalent to [tex]\left (\dfrac {1}{3}\right )^x = 27 ^x + 2[/tex].

Given:

The given equation is [tex]\left (\dfrac {1}{3}\right )^x = 27 ^x + 2[/tex].

Solving left hand side of the equation.

[tex]\left (\dfrac {1}{3}\right )^x[/tex]

Apply the law of indices.

[tex]\left (\dfrac {1}{3}\right )^x=(-3)^x[/tex]

Solving right hand side of the equation.

[tex]27 ^x + 2=(3^{3x}+2)[/tex]

Thus, the equation [tex]3^{-x} = 3^{3x} + 2[/tex] is equivalent to [tex]\left (\dfrac {1}{3}\right )^x = 27 ^x + 2[/tex].

Learn more about law of indices here:

https://brainly.com/question/13794351