The portion of the parabola can be parameterized by [tex]\mathbf r(t)=(t,t^2)[/tex] where [tex]0\le t\le3[/tex].
Now the line integral can be computed as
[tex]\displaystyle\int_C\mathbf F(x(t),y(t))\cdot\mathrm d\mathbf r(t)=\int_0^3(-t^2\sin t,\cos t)\cdot(1,2t)\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^3(-t^2\sin t+2t\cos t)\,\mathrm dt[/tex]
[tex]=9\cos3[/tex]