Respuesta :

2pi rad=360 deg

so use ratio
(pi/12)/(2pi)=xdeg/360
(pi/24pi)=x/360
1/24=x/360
times boths ides y 360
360/24=x
15=x

the refernc angle is 15 degres

The reference angle of [tex]\[{}^{\text{pi}}/{}_{\text{12}}\][/tex] is [tex]\frac{\pi }{12}[/tex].

What is reference angle?

The reference angle for a rotation is the acute angle formed by the terminal side and the [tex]$x-$[/tex] axis.

We have to find the reference angle of [tex]\[{}^{\text{pi}}/{}_{\text{12}}\][/tex].

In the image of unit circle below:

As we see in the image, the [tex]\frac{\pi }{2}[/tex]  is in the first quadrant.

So, the reference angle is [tex]\frac{\pi }{12}[/tex].

If we convert the given reference angle in degree, then we get,[tex]$D=\left( \frac{R}{\pi } \right)\cdot 180$[/tex]

as

[tex]${{\pi }^{c}}=180{}^\circ $[/tex]

Where [tex]D[/tex] is the degree and [tex]R[/tex] is the reference angle.

[tex]$D=\frac{\left( \frac{\pi }{12} \right)\cdot 180}{\pi }$[/tex]

Cancel the common factor [tex]\pi[/tex].

[tex]$D=\frac{180}{12}$[/tex]

[tex]$\therefore D=15{}^\circ $[/tex]

Hence, the reference angle is [tex]\frac{\pi }{12}[/tex] and in degree is [tex]15{}^\circ $[/tex].

Learn more about reference angle here

https://brainly.com/question/10613177?

#SPJ2

Ver imagen AmitPaswan