Respuesta :
Let
x-------> the amount of [tex]2\%[/tex] solution
y--------> the amount of [tex]7\%[/tex] solution
we know that
[tex]2\%=0.02\\7\%=0.07\\3.5\%=0.035[/tex]
so
[tex]x+y=1[/tex]
[tex]y=1-x[/tex] -------> equation A
[tex]0.02x+0.07y=0.035[/tex] -------> equation B
substitute equation A in equation B
[tex]0.02x+0.07(1-x)=0.035[/tex]
[tex]0.02x+0.07-0.07x=0.035[/tex]
[tex]0.05x=0.035[/tex]
[tex]x=0.7\ liters[/tex]
find the value of y
[tex]y=1-x[/tex]
[tex]y=1-0.7=0.3\ liters[/tex]
therefore
The student need [tex]0.7\ liters[/tex] of [tex]2\%[/tex] solution and [tex]0.3\ liters[/tex] of [tex]7\%[/tex] solution
the answer is
A) The percent values were written incorrectly in the equation
B) The amount of 7% solution should be written as 1 – x, not x – 1.