Respuesta :

Answer:

(0, 3) and (3, 0)

Step-by-step explanation:

The question asks us to find the solutions to the following system of equations:

[tex]y = x^2 - 4x + 3[/tex]

[tex]y = -x + 3[/tex]

Therefore, as [tex]y = y[/tex], we can say:

[tex]x^2 - 4x + 3 = -x + 3[/tex],

and then solve for [tex]x[/tex]:

⇒ [tex]x^2 - 4x + 3 + x = 3[/tex]              [Adding x to both sides of the equation]

⇒ [tex]x^2 - 3x + 3 - 3 = 0[/tex]              [Subtracting 3 from both sides]

⇒[tex]x^2 -3x = 0[/tex]

⇒ [tex]x(x-3) = 0[/tex]                         [Factoring x out]

• [tex]x= \bf 0[/tex]  or

• [tex]x- 3 = 0[/tex]

⇒ [tex]x = \bf 3[/tex]

Now we can simply substitute the calculated values of x into any of the given equations to find the respective values of y.

Substituting into the equation [tex]y = -x + 3[/tex] :

• when [tex]x = 0[/tex] ⇒ [tex]y = -(0) +3 = \bf 3[/tex]

• when [tex]x = 3[/tex] ⇒ [tex]y = -(3) + 3 = \bf 0[/tex]

Therefore, the solutions to the given set of equations are (0, 3) and (3, 0).

Learn more about systems of equations here:

https://brainly.com/question/13157348

Learn more about the "zero-product property" that was used to calculate the second value of x here:

https://brainly.com/question/27751281