Drag and drop an answer to each box to correctly complete the derivation of a formula for the area of a sector of a circle.
Put responses in the correct input to answer the question. Select a response, navigate to the desired input, and insert the response. Responses can be selected and inserted using the space bar, enter key, left mouse button, or touchpad. Responses can also be moved by dragging with a mouse.


Suppose a sector of a circle with radius r has a central angle of θ. Since a sector is a fraction of a full circle, the ratio of a sector's area A to the circle's area is equal to the ratio of the _________ to the measure of a full rotation of the circle. A full rotation of a circle is 2π radians. This proportion can be written as A/πr2=___________. Multiply both sides by πr2 and simplify to get _________, where θ is the measure of the central angle of the sector and r is the radius of the circle.

(answers in image)

Drag and drop an answer to each box to correctly complete the derivation of a formula for the area of a sector of a circle Put responses in the correct input to class=