Explanation :
(a) Initial velocity, v₁ = 60 mph
Final velocity, v₂ = 20 mph
Let KE₁ and KE₂ are the initial and final kinetic energies.
[tex]\dfrac{KE_1}{KE_2}=\dfrac{1/2mv_1^2}{1/2mv_2^2}[/tex]
[tex]\dfrac{KE_1}{KE_2}=\dfrac{(60)^2}{(20)^2}[/tex]
[tex]\dfrac{KE_1}{KE_2}=9[/tex]
So, the kinetic energy increases 9 times.
(b) Initial velocity, v₁ = 60 mph
Final velocity, v₂ = 30 mph
Let KE₁ and KE₂ are the initial and final kinetic energies.
[tex]\dfrac{KE_1}{KE_2}=\dfrac{1/2mv_1^2}{1/2mv_2^2}[/tex]
[tex]\dfrac{KE_1}{KE_2}=\dfrac{(60)^2}{(30)^2}[/tex]
[tex]\dfrac{KE_1}{KE_2}=4[/tex]
So, the kinetic energy increases 4 times.
Hence, this is the required solution.