[tex]\bf cot[cos^{-1}(u)]\\\\
-----------------------------\\\\
\textit{well, if }cos^{-1}(u)\textit{ give us an angle of say }\theta
\\\\\\
\textit{that simply means that }cos(\theta)=u\iff cos(\theta)=\cfrac{u}{1}\\\\
-----------------------------\\\\
cos(\theta)=\cfrac{adjacent}{hypotenuse}\qquad cos(\theta)=\cfrac{u}{1}\cfrac{\leftarrow adjacent=a}{\leftarrow hypotenuse=c}
\\\\\\[/tex]
[tex]\bf \textit{let's find the value of "b", or the opposite side}
\\\\\\
\textit{using the pythagorean theorem}
\\\\\\
c^2=a^2+b^2\implies \sqrt{c^2-a^2}=b\implies \sqrt{1^2-u^2}=b\\\\\\ \sqrt{1-u^2}=b\\\\
-----------------------------\\\\
thus \qquad cot[cos^{-1}(u)]\implies cot(\theta)\implies cot(\theta)=\cfrac{adjacent}{opposite}
\\\\\\
cot(\theta)=\cfrac{u}{\sqrt{1-u^2}}[/tex]