Respuesta :

[tex]\bf cot[cos^{-1}(u)]\\\\ -----------------------------\\\\ \textit{well, if }cos^{-1}(u)\textit{ give us an angle of say }\theta \\\\\\ \textit{that simply means that }cos(\theta)=u\iff cos(\theta)=\cfrac{u}{1}\\\\ -----------------------------\\\\ cos(\theta)=\cfrac{adjacent}{hypotenuse}\qquad cos(\theta)=\cfrac{u}{1}\cfrac{\leftarrow adjacent=a}{\leftarrow hypotenuse=c} \\\\\\[/tex]

[tex]\bf \textit{let's find the value of "b", or the opposite side} \\\\\\ \textit{using the pythagorean theorem} \\\\\\ c^2=a^2+b^2\implies \sqrt{c^2-a^2}=b\implies \sqrt{1^2-u^2}=b\\\\\\ \sqrt{1-u^2}=b\\\\ -----------------------------\\\\ thus \qquad cot[cos^{-1}(u)]\implies cot(\theta)\implies cot(\theta)=\cfrac{adjacent}{opposite} \\\\\\ cot(\theta)=\cfrac{u}{\sqrt{1-u^2}}[/tex]