Respuesta :

x= 5 cost ===> cost = x/5  & y= 5 sint ===> sint = y/5

Let's square cost & sint

cos^2t = (x/5)^2   & sin^2t = (y/5)^2

Add up both: cos^2t + sin^2t = (x^2 +y^2)/25 ====cos^2t + sin^2t =1

hence (x^2+y^2)/25 =1 or x^2+y^2=25

After eliminating the parameters in x = 5 cos t and y = 5 sin t, we have;

x²/25 + y²/25 = 1

Parametric functions

x/5 = cos t

y/5 = sin t

From trigonometric identities, we know that;

sin²t + cos²t = 1

(y/5)² + (x/5)² = 1

Thus;

x²/25 + y²/25 = 1

Thus, after eliminating the parameters, we have the answer as;

x²/25 + y²/25 = 1

Read more about parametric functions at; https://brainly.com/question/10165611