Respuesta :

Answer: (B) - 43°
Explanation: Using the sine rule, we can say that sinA/BC = sinC/AB
sin(61)/45 = sin(C)/35
sin(C) = 35sin(61)/45

sin(C) ≈ 0.680259772....
C = arcsin(0.680259772...)

C = 42.8639459...
C ≈ 43°

Answer:

((B)

Step-by-step explanation:

From the figure, it is given that ABC is a triangle and AB=35 and BC=45.

Now, from ΔABC, using the sine law, we get

[tex]\frac{sinA}{BC}=\frac{sinC}{AB}[/tex]

Substituting the given values, we get

[tex]\frac{sin61^{\circ}}{45}=\frac{sinC}{35}[/tex]

[tex]sinC=\frac{35\times(sin61)}{45}[/tex]

[tex]sinC=\frac{35\times(0.874)}{45}[/tex]

[tex]sinC=\frac{30.611}{45}[/tex]

[tex]sinC=0.680[/tex]

[tex]C=sin^{-1}(0.680)[/tex]

[tex]C=42.84[/tex]

[tex]C[/tex]≈[tex]43[/tex]

Thus, the measure of angle C is 43.

Hence, option (B) is correct.