[tex]\bf csc(\theta)=\cfrac{1}{sin(\theta)}
\qquad
% secant
sec(\theta)=\cfrac{1}{cos(\theta)}\\\\
-----------------------------\\\\
sec(x)-csc(x)=\cfrac{4}{3}\implies \cfrac{1}{cos(x)}-\cfrac{1}{sin(x)}=\cfrac{4}{3}
\\\\\\
\cfrac{sin(x)-cos(x)}{cos(x)sin(x)}=\cfrac{4}{3}[/tex]
thus, as a matter of ratio, one can say that sin(x)-cos(x) = 4 then