Respuesta :

The 17 Cl 37 nucleus has 37 nucleons. Thus, making the energy per nucleon is 1.6944 x 10^-19 J/37 nucleons. Energy = 5.09x10^-11 J. So, (5.09x10^-11)/37 nucleons you get a 1.38x10^-12 J/nucleon as an answer.

I hope this helps you with your problem.

Answer: The binding energy per nucleon is [tex]1.4\times 10^{-12}J[/tex]

Explanation:

Nucleons are defined as the sub-atomic particles which are present in the nucleus of an atom. Nucleons are protons and neutrons.

We are given a nucleus having representation:  [tex]_{17}^{37}\textrm{Cl}[/tex]

Number of protons = 17

Number of neutrons = 37 - 17 = 20

To calculate the mass defect of the nucleus, we use the equation:

[tex]\Delta m=[(n_p\times m_p)+(n_n\times m_n)-M[/tex]

where,

[tex]n_p[/tex] = number of protons  = 17

[tex]m_p[/tex] = mass of one proton  = 1.00728 amu

[tex]n_n[/tex] = number of neutrons  = 20

[tex]m_n[/tex] = mass of one neutron = 1.00866 amu

M = nuclear mass = 36.9566 amu

Putting values in above equation, we get:

[tex]\Delta m=[(17\times 1.00728)+(20\times 1.00866)]-36.9566\\\\\Delta m=0.34036amu[/tex]

To calculate the binding energy of the nucleus, we use the equation:

[tex]E=\Delta mc^2\\E=(0.34036u)\times c^2[/tex]

[tex]E=(0.34036u)\times (931.5MeV)[/tex]    (Conversion factor:  [tex]1u=931.5MeV/c^2[/tex]  )

[tex]E=317.04MeV=507.264\times 10^{-13}J[/tex]   (Conversion factor:  [tex]1MeV=1.6\times 10^{-13}J[/tex]  )

Number of nucleons in [tex]_{17}^{37}\textrm{Cl}[/tex] atom = 37

To calculate the binding energy per nucleon, we divide the binding energy by the number of nucleons, we get:

[tex]\text{Binding energy per nucleon}=\frac{\text{Binding energy}}{\text{Nucleons}}[/tex]

[tex]\text{Binding energy per nucleon}=\frac{507.26\times 10^{-13}J}{37}=1.4\times 10^{-12}J[/tex]

Hence, the binding energy per nucleon is [tex]1.4\times 10^{-12}J[/tex]