Respuesta :

Fe (iron) has 26 protons,30 neutrons and 26 electrons. In order to calculate the binding energy, first you need to find the total mass of all particles in the nucleus:


26 x mass of proton + 30 x mass of neutron ( all in a.m.u.) = say "m" 


Mass defect is m- 55.9207 amu, then convert it into grams and put in equation E = mc2 to get binding energy of Fe.

 Divide it by number of nucleons to get binding energy per nucleon.

Answer: The binding energy per nucleon is [tex]1.41\times 10^{-12}J[/tex]

Explanation:

Nucleons are defined as the sub-atomic particles which are present in the nucleus of an atom. Nucleons are protons and neutrons.

We are given a nucleus having representation:  [tex]_{26}^{56}\textrm{Fe}[/tex]  

Number of protons = 26

Number of neutrons = 56 - 26 = 30  

To calculate the mass defect of the nucleus, we use the equation:

[tex]\Delta m=[(n_p\times m_p)+(n_n\times m_n)-M[/tex]

where,

[tex]n_p[/tex] = number of protons = 26  

[tex]m_p[/tex] = mass of one proton  = 1.00728 amu

[tex]n_n[/tex] = number of neutrons  = 30  

[tex]m_n[/tex] = mass of one neutron = 1.00866 amu

M = nuclear mass = 55.9207 amu  

Putting values in above equation, we get:  

[tex]\Delta m=[(26\times 1.00728)+(30\times 1.00866)]-55.9207\\\\\Delta m=0.52838amu[/tex]

To calculate the binding energy of the nucleus, we use the equation:

[tex]E=\Delta mc^2\\E=(0.52838u)\times c^2[/tex]

[tex]E=(0.52838u)\times (931.5MeV)[/tex]    (Conversion factor:  [tex]1u=931.5MeV/c^2[/tex]  )

[tex]E=492.2MeV=787.52\times 10^{-13}J[/tex]   (Conversion factor: [tex]1MeV=1.6\times 10^{-13}J[/tex]  )

Number of nucleons in [tex]_{26}^{56}\textrm{Fe}[/tex] atom = 56

To calculate the binding energy per nucleon, we divide the binding energy by the number of nucleons, we get:  

[tex]\text{Binding energy per nucleon}=\frac{\text{Binding energy}}{\text{Nucleons}}[/tex]

[tex]\text{Binding energy per nucleon}=\frac{787.52\times 10^{-13}J}{56}=1.41\times 10^{-12}J[/tex]

Hence, the binding energy per nucleon is [tex]1.41\times 10^{-12}J[/tex]