Volume of a pyramid: v = 1/3(area of base x (height surface area of a pyramid: a = 1/2(perimeter of base x (slant height + (area of base a pyramid has a height of 4.7 in. and a slant height of 5.2 in. its base is a square with sides of 3.5 in. find the pyramid's volume and surface area.

Respuesta :

V= 1/3 LWH
1/3(3.5)(3.5)(4.7)
19.19 in ^3

SA= 2(3.5)(5.2)+(3.5)^2
48.65 in^2

Answer:

Volume of Pyramid [tex]= 19.19 in^3\\[/tex]

Surface Area of Pyramid  [tex]= 48.65 in^2\\\\[/tex]

Step-by-step explanation:

Given

Height of the pyramid [tex]= 4.7 in\\[/tex]

Slant height of the pyramid = [tex]5.2 in\\[/tex]

Base of pyramid is a square with side [tex]= 3.5 in\\[/tex]

Volume of the pyramid

[tex]= \frac{1}{3} * (3.5 * 3.5) * (4.7)\\= 19.19 in^3\\[/tex]

Surface area of the pyramid

[tex]=( \frac{1}{2} * (4 * 3.5) * 5.2) + ( 3.5 * 3.5)\\= 48.65 in^2\\[/tex]