Respuesta :
The correct system of equations is:
[tex] \left \{ {{a+c=30} \atop {8a+c=100}} \right. [/tex]
Let's express [tex]a[/tex] from first equation:
[tex]a=30-c[/tex]
Now let's replace [tex]a[/tex] in second equation with found expression and solve it:
[tex]8(30-c)+c=100[/tex]
[tex]240-8c+c=100[/tex]
[tex]7c=240-100[/tex]
[tex]7c=140[/tex]
[tex]c=140/7=20[/tex]
Finally, let's replace [tex]c[/tex] with found value in first equation and solve it too:
[tex]a+20=30[/tex]
[tex]a=30-20=10[/tex]
So, the correct answer is:
20 children adn 10 adults
Equation 1: a + c = 30
Equation 2: 8a + c = 100
[tex] \left \{ {{a+c=30} \atop {8a+c=100}} \right. [/tex]
Let's express [tex]a[/tex] from first equation:
[tex]a=30-c[/tex]
Now let's replace [tex]a[/tex] in second equation with found expression and solve it:
[tex]8(30-c)+c=100[/tex]
[tex]240-8c+c=100[/tex]
[tex]7c=240-100[/tex]
[tex]7c=140[/tex]
[tex]c=140/7=20[/tex]
Finally, let's replace [tex]c[/tex] with found value in first equation and solve it too:
[tex]a+20=30[/tex]
[tex]a=30-20=10[/tex]
So, the correct answer is:
20 children adn 10 adults
Equation 1: a + c = 30
Equation 2: 8a + c = 100
The answer will be Equation 1: a + c = 30
Equation 2: 8a + c = 100, where 20 children and 10 adults. Hope it help!
Equation 2: 8a + c = 100, where 20 children and 10 adults. Hope it help!