[tex]\bf \textit{volume of a pyramid}\\\\
V=\cfrac{1}{3}Bh\qquad
\begin{cases}
B=\textit{area of its base}\\
h=height\\
----------\\
B=\frac{1}{4}B\\\\
h=\frac{1}{4}h
\end{cases}\implies V=\cfrac{1}{3}\cdot \cfrac{B}{4}\cdot \cfrac{h}{4}
\\\\\\
V=\cfrac{1}{3}\cdot \cfrac{1}{4\cdot 4}Bh\implies V=\cfrac{1}{16}\left( \cfrac{1}{3}Bh \right)[/tex]
so, you'd end up with a pyramid with a volume "one sixteenth" of the original then
now, the original had a volume of 1536, the quarterized version will then just be one sixteenth of that, or 1536 * 1/36