Respuesta :
1. The surface area of a cone S is S= [tex] \pi r^{2}+ \pi rl[/tex], where r is the radius of the base and l is the slant height.
2. The slant height l is found as follows:
[tex]l^{2}= OC^{2}+ OB^{2}[/tex]
[tex]l^{2}= 12^{2}+ 62^{2}=144+3844=3988[/tex]
[tex]l= \sqrt{3988}=63.15[/tex]
3.
[tex]A=\pi r^{2}+ \pi rl=3.14(12)^{2}+3.14*12*63.15 [/tex]
[tex]= 452.16+2379.492 =2831.652 ( m^{2} )[/tex]
[tex]= 452.16+2379.492 =2831.652 ( m^{2} )[/tex]
4. The answer is C
2. The slant height l is found as follows:
[tex]l^{2}= OC^{2}+ OB^{2}[/tex]
[tex]l^{2}= 12^{2}+ 62^{2}=144+3844=3988[/tex]
[tex]l= \sqrt{3988}=63.15[/tex]
3.
[tex]A=\pi r^{2}+ \pi rl=3.14(12)^{2}+3.14*12*63.15 [/tex]
[tex]= 452.16+2379.492 =2831.652 ( m^{2} )[/tex]
[tex]= 452.16+2379.492 =2831.652 ( m^{2} )[/tex]
4. The answer is C

Answer:
Option C - 2833 sq.m.
Step-by-step explanation:
Given : A conical grain storage tank that has a height of 62 meters and a diameter of 24 meters.
To find : What is the surface area of a conical grain storage tank?
Solution :
The formula of surface area of a conical grain storage tank is
[tex]S=\pi r(r+l)[/tex]
Where, r is the radius and l is the slant height.
Height of conical tank = 62 m
Diameter of conical tank = 24 m
Radius of conical tank = 12 m
The slant height is
[tex]l=\sqrt{r^2+h^2}[/tex]
[tex]l=\sqrt{12^2+62^2}[/tex]
[tex]l=\sqrt{144+3844}[/tex]
[tex]l=\sqrt{3988}[/tex]
[tex]l=63.15[/tex]
Substitute r and l in the formula,
[tex]S=3.14\times 12(12+63.15)[/tex]
[tex]S=3.14\times 12\times 75.15[/tex]
[tex]S=2831.67[/tex]
Approximately, [tex]S=2833m^2[/tex]
Therefore, Option C is correct.
The surface area of a conical grain storage tank is 2833 sq. m.