Respuesta :
The correct answer is A. The lines are parallel.
Also, if your question is urgent, push up the point value on the question. We answerers are on the lookout.
Also, if your question is urgent, push up the point value on the question. We answerers are on the lookout.
Answer:
These two equations represent parallel lines because the slopes of the lines are the same.
Step-by-step explanation:
Line JK : [tex]y=4x-8[/tex]
Line ML : [tex]y=4x+4[/tex]
The lines are said to be parallel if they have same slopes.
The lines are said to be perpendicular if the product of their slopes is -1
Slope- intercept form: [tex]y=mx+c[/tex]
Where m is the slope
Compare the given lines with the slope intercept form .
Line JK : [tex]y=4x-8[/tex]
So, on comparing we get slope of line JK is 4
Line ML : [tex]y=4x+4[/tex]
So, on comparing we get slope of line ML is 4
Since the slope of both lines are same .
So, the given lines are parallel to each other .
Hence Option A is correct.
These two equations represent parallel lines because the slopes of the lines are the same.