Respuesta :

Answer:

Graph has been shown in the attachments.

Step-by-step explanation:

We have to graph the function [tex]y=\left(\frac{2}{3}\right)^x-2[/tex]

It represents an exponential function. Let us find the x and y intercepts,

For x-intercept, we plug y = 0

[tex]0=\left(\frac{2}{3}\right)^x-2[/tex]

[tex]2=\left(\frac{2}{3}\right)^x[/tex]

Take log both sides, we get

[tex]\log 2=\log(\left(\frac{2}{3}\right)^x)[/tex]

[tex]x=-1.71[/tex]

For y-intercept, we plug x=0

[tex]y=\left(\frac{2}{3}\right)^0-2[/tex]

[tex]y=-2[/tex]

Therefore, the graph must passes through the points (0,-2) and (-1.71,0)

The horizontal asymptote of the graph is given by

[tex]y=\lim_{x\rightarrow \infty }g(x)[/tex]

[tex]y=\lim_{x\rightarrow \infty }\left(\frac{2}{3}\right)^x-2[/tex]

[tex]y=-2[/tex]

Hence, using these information, we can easily graph the function.

Ver imagen Аноним
slamcg

Answer:

Third graph

Step-by-step explanation: