Respuesta :

A point M on the unit circle could be represented by (x , y), which coordinates are nothing but cos Ф (for x) & sin Ф (for y, hence:

tan Ф = sin Ф / cos Ф ==> tan Ф (4/5) / (3/5) ==> tan Ф =(4/3).

Now let's calculate the angle: tan⁻¹Ф ==> tan⁻¹(4/3) ≈43°

Answer:

[tex]tan{\theta}=\frac{4}{3}[/tex]

Step-by-step explanation:

A point M on the unit circle is represented as (x,y) for which the coordinates are [tex]cos{\theta}[/tex] for x and [tex]sin{\theta}[/tex] for y.

Now, we know that in unit circle [tex]tan{\theta}[/tex] is written as:

[tex]tan{\theta}=\frac{sin{\theta}}{cos{\theta}}[/tex]

=[tex]\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}[/tex]

Thus,the value of [tex]tan{\theta}=\frac{4}{3}[/tex].