Respuesta :

[tex]\bf \begin{array}{clclll} (-3&,&\sqrt{3})\\ x&&y \end{array}\qquad \begin{cases} r=\sqrt{x^2+y^2}\\\\ \theta=tan^{-1}\left( \frac{y}{x} \right) \end{cases}\\\\ -----------------------------\\\\[/tex]

[tex]\bf r=\sqrt{(-3)^2+(\sqrt{3})^2}\implies r=\sqrt{9+3}\implies r=\sqrt{12}\implies r=2\sqrt{3} \\\\\\ \theta=tan^{-1}\left( \frac{\sqrt{3}}{-3} \right) \impliedby \textit{now, let's rationalize the numerator} \\\\\\ \cfrac{\sqrt{3}}{-3}\cdot \cfrac{\sqrt{3}}{\sqrt{3}}\implies \cfrac{3}{-3\sqrt{3}}\implies -\cfrac{1}{\sqrt{3}}[/tex]

now, let's take a peek at our terminal point, -3, √(3)....  the "x" is negative, the "y" is positive, and that means, the 2nd quadrant

[tex]\bf \textit{now, take a look in your Unit Circle at }\frac{5\pi }{6}\quad \begin{cases} x=-\frac{\sqrt{3}}{2}\\\\ y=\frac{1}{2} \end{cases} \\\\\\ \cfrac{y}{x}\implies \cfrac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}}\implies \cfrac{1}{2}\cdot -\cfrac{2}{\sqrt{3}}\implies -\cfrac{1}{\sqrt{3}} \\\\\\ \theta=\cfrac{5\pi }{6} \\\\\\ thus\qquad \qquad \left( 2\sqrt{3}\ ,\ \frac{5\pi }{6} \right)[/tex]