Respuesta :
notice, a HEXAgon, has HEXA sides, 6 sides
[tex]\bf \textit{area of a regular polygon}\\\\ A=\cfrac{1}{4}ns^2cot\left( \frac{180}{n} \right)\qquad \begin{cases} n=\textit{number of sides}\\ s=\textit{length of one side}\\ \frac{180}{n}=\textit{angle in degrees}\\ ----------\\ n=6\\ s=8 \end{cases} \\\\\\ A=\cfrac{1}{4}\cdot 6\cdot 8^2\cdot cot\left( \frac{180}{6}\right)[/tex]
the angle is in degrees, thus, make sure your calculator is in Degree mode, when getting the cotangent
[tex]\bf \textit{area of a regular polygon}\\\\ A=\cfrac{1}{4}ns^2cot\left( \frac{180}{n} \right)\qquad \begin{cases} n=\textit{number of sides}\\ s=\textit{length of one side}\\ \frac{180}{n}=\textit{angle in degrees}\\ ----------\\ n=6\\ s=8 \end{cases} \\\\\\ A=\cfrac{1}{4}\cdot 6\cdot 8^2\cdot cot\left( \frac{180}{6}\right)[/tex]
the angle is in degrees, thus, make sure your calculator is in Degree mode, when getting the cotangent