The Haber process can be used to produce ammonia (NH3) from hydrogen gas (H2) and nitrogen gas (N2). The balanced equation for this process is shown below.

3H2 + N2 mc025-1.jpg 2NH3

The molar mass of NH3 is 17.03 g/mol. The molar mass of H2 is 2.0158 g/mol. In a particular reaction, 0.575 g of NH3 forms. What is the mass, in grams, of H2 that must have reacted, to the correct number of significant figures?
0.1
0.102
0.10209
0.1021

Respuesta :

Answer : The mass of [tex]H_2[/tex] in grams is 0.102g.

Solution : Given,

Molar mass of [tex]NH_3[/tex] = 17.03 g/mole

Molar mass of [tex]H_2[/tex] = 2.0158 g/mole

Given Mass of [tex]NH_3[/tex] = 0.575 g

First we have to calculate the moles of [tex]NH_3[/tex].

[tex]\text{ Moles of }NH_3=\frac{\text{ Given mass of }NH_3}{\text{ Molar mass of }NH_3}[/tex] = [tex]\frac{0.575g}{17.03g/mole}[/tex] = 0.0337 moles

The given balanced equation is,

[tex]3H_2(g)+N_2(g)\rightarrow 2NH_3(g)[/tex]

From the above reaction, we conclude that

2 moles of [tex]NH_3[/tex] produced from 3 moles of [tex]H_2[/tex]

then the 0.0337 moles of [tex]NH_3[/tex] produces to give [tex]\frac{3moles\times 0.0337moles}{2moles}[/tex] moles of [tex]H_2[/tex]

The moles of [tex]H_2[/tex] = 0.0505 moles

The mass of [tex]H_2[/tex] = Moles of [tex]H_2[/tex] × Molar mass of [tex]H_2[/tex] = 0.0505 moles × 2.0158 g/mole = 0.10179 g

The mass of [tex]H_2[/tex] in the correct number of significant figures is 0.102 g.

Answer:

0.102

Explanation:

Edge 2022