Respuesta :
for a parabolic equation like R(p), the highest point is at the vertex, check the picture below
[tex]\bf \textit{vertex of a parabola}\\ \quad \\ \begin{array}{lccclll} R(p)=&-25p^2&+1700p&+0\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array}\qquad \left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right) \\\\\\ \textit{so the maximum revenue occurs when the price is }\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}[/tex]
[tex]\bf \textit{vertex of a parabola}\\ \quad \\ \begin{array}{lccclll} R(p)=&-25p^2&+1700p&+0\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array}\qquad \left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right) \\\\\\ \textit{so the maximum revenue occurs when the price is }\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}[/tex]

The value of unit price is $34
What is a parabola?
A parabola refers to an equation of a curve, such that a point on the curve is equidistant from a fixed point, and a fixed line.
According to the given problem,
We know, in a parabolic curve, for maximum point,
[tex]\frac{d(R)}{dp}[/tex] = 0
⇒ [tex]\frac{d(-25p^{2}+1700p) }{dp}[/tex] = 0
⇒ -50p + 1700 = 0
⇒ 1700 = 50p
⇒ 50p = 1700
⇒ p = 1700/34
⇒ p = $34
Hence, we can conclude, the unit price for yielding the maximum revenue is $34
Learn more about parabola here: https://brainly.com/question/10572747
#SPJ2