Respuesta :

mergl
f''(x)=-2+36x-12x^2, f(0)=2, f'(0)=18
f'(x)=-2x+18x^2-4x^3+c
f'(0)=-2(0)+18(0)^2-4(0)^3+c=18
f'(0)=18x^2-4x^3-2x+18
f(x)=6x^3-x^4-x^2+18x+c
f(0)=6(0)^3-(0)^4-(0)^2+18(0)+c=2
f(x)=6x^3-x^4-x^2+18x+2

Answer:

[tex]f(x)=-x^4+6x^3-x^2+18x+2[/tex]

Step-by-step explanation:

In order to find [tex]f(x)[/tex] we need to integrate twice [tex]f''(x)[/tex] . So it's good to have in mind the next rules:

[tex]\int\ {x^n} \, dx =\frac{1}{n+1} x^{n+1} +C[/tex]

[tex]\int\ {k} \, dx =k*x+C[/tex]

[tex]k\in R[/tex]

Where C, is an arbitrary constant.

The integral of the sum of two functions is equal to the sum of the integrals of these functions:

[tex]\int\ {f(x)+g(x)} \, dx = \int\ {f(x)} \, dx + \int\ {g(x)} \, dx[/tex]

So, let's integrate [tex]f''(x)[/tex] in order to obtain [tex]f'(x)[/tex] :

[tex]f'(x)= \int\ {f''(x)} \, dx =\int\ {-2+36x-12x^2} \, dx = \int\ {-2} dx+\int\ {36x} \, dx+\int\ {-12x^2} \, dx[/tex]

Integrating:

[tex]\int\ {-2} dx+\int\ {36x} \, dx+\int\ {-12x^2} \, dx=-2x+\frac{36}{2} x^2-\frac{12}{3}x^3+C_1 \\=-2x+18x^2-4x^3+C_1[/tex]

Evaluating the initial condition in order to find C1:

[tex]f'(0)=-2(0)+18(0)^2-4(0)^3+C_1=18\\C_1=18[/tex]

Now, let's integrate [tex]f'(x)[/tex] in order to obtain [tex]f(x)[/tex] :

[tex]f(x)=\int\ {f'(x)} \, dx = \int\ {-2x+18x^2-4x^3+18} \, dx =\frac{-2}{2}x^2 +\frac{18}{3}x^3-\frac{4}{4} x^4+18x+C_2\\ f(x)=-x^2+6x^3-x^4+18x+C_2[/tex]

Evaluating the other initial condition in order to find C2:

[tex]f(0)=-(0)^2+6(0)^3-(0)^4+18(0)+C_2=2\\C_2=2[/tex]

Knowing the value of C1 and C2, we can conclude that the function[tex]f(x)[/tex] is given by:

[tex]f(x)=-x^4+6x^3-x^2+18x+2[/tex]