[tex]\bf \qquad \qquad \textit{direct proportional variation}\\\\
\textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby
\begin{array}{llll}
k=constant\ of\\
variation
\end{array}\\\\
-------------------------------\\\\
[/tex]
[tex]\bf \begin{cases}
o=\textit{overtime pay}\\
h=\textit{hours worked}\\
p=\textit{payrate}
\end{cases}\qquad \qquad o=\underline{k}hp
\\\\\\
\textit{we know that }
\begin{cases}
o=103.44\\
h=8\\
p=8.62
\end{cases}103.44=k8\cdot 8.62\implies \cfrac{103.44}{8\cdot 8.62}=k
\\\\\\
1.5=k\implies \boxed{\cfrac{3}{2}=k}\qquad \qquad o=\cfrac{3}{2}hp[/tex]
now, what's "h" when the overtime pay is 213.75 and the payrate is 9.5?
well [tex]\bf \begin{cases}
o=213.75\\
p=9.5
\end{cases}\implies 213.75=\cfrac{3}{2}\cdot h\cdot 9.5[/tex]
solve for "h"